国产精品18禁久久久久久白浆I天天做天天爽I66精品视频I西西人体44www大胆无码I国产区一区二区三区I天天碰天天碰Imetart顶级尤物videoI国产91精品在线观看I少妇高潮一区二区三区99刮毛I中文字幕人妻一区二区I天天色播I免费特黄视频I污视频网站免费在线观看I欧美一区二区三区视频在线播放I久久精品国产99国产I777视频网I国产精品smI日日摸日日碰I国产成人在线免费观看I91成人在线免费观看

醌氧化還原介質對厭氧氨氧化生物活性的影響

錦集
  RMS 通過厭氧氨氧化生物抑制TN的去除性能
  RMs 可以顯著提高厭氧氨氧化菌關鍵酶的活性
  RMs是推斷發揮作用的Q/QH2在厭氧氨氧化過程
  作為主要的原因,可能會阻止ladderane RMs 和關鍵酶之間的聯系
文章信息
1.文章歷史
   2013年9月修訂
   2013年10月31日修訂編版
   2013年11月1日被接受
   2013年11月10日在網上發布
2.關鍵詞
   厭氧氨氧化
   氧化還原介質
   肼脫氫酶
   亞硝酸鹽還原酶
   硝酸還原酶
3.摘要
   本研究shou先探討厭氧氨氧化生物/關鍵酶和醌的氧化還原介質之間的活動關系,其中蒽醌-2,6-二磺酸(AQDS),2-羥基-1,4- napthoqui-無(LAW)和蒽醌-2-羧酸(AQC)。實驗結果表明,總脫氮性能隨三種氧化還原介質(RMS)用量的增加而呈下降趨勢。例如,當AQC增加到0.8毫米,TN的去除率急劇減少到17.2mg-N/gVSS/h,只能控制大約20%。這種現象可能是微生物中毒與細胞外的RM增加而引起的。然而,粗肼脫氫酶,亞硝酸鹽還原酶,和硝酸還原酶的活性增強比沒有RMS的對照實驗約0.6-3倍。RMS被推斷在厭氧氨氧化過程中發揮輔酶/泛醌(Q/QH2)作用。此外,具體ladderane 膜結構可以阻隔RMS和厭氧氨氧化膜內的關鍵酶。主要原因可能是RMS對厭氧氨氧化生物和關鍵酶的反向影響。
1.簡介
   厭氧氨氧化(ANAMMOX)現在被確認為是一種新穎的重要的生物脫氮工藝。它可以在厭氧條件下將NH4與NO2直接轉化成N2(Strouset等人,1999)。與傳統工藝相比(硝化反硝化生物),厭氧氨氧化過程提供了顯著的優點,如對氧氣和有機碳,低污泥產量和減少CO2和NO2的排放(Opden Campet等人,2006)。近日,唐等人(2010)報告了一個高達74.3-76.7 kg-N/m3/d的脫氮率在一個實驗室規模的厭氧氨氧化UASB反應器,在廢水生物脫氮的厭氧氨氧化工藝的高電位。然而,如此高的脫氮率(NRR)是通過連續添加厭氧氨氧化污泥到目標反應器,其中生物量濃度的增加高達42-57.7VSS/L(唐等人,2010)。此外,厭氧氨氧化菌相對長的培養時間為也會導致較長的啟動時間,通過降低厭氧氨氧化菌的豐度使厭氧氨氧化系統更加脆弱。因此,提高生物質厭氧氨氧化菌活性,并進一步縮短厭氧氨氧反應器的啟動是很趣味性和挑戰性的課題。研究人員已經進行了大量的努力, 通過外場能量(磁場力,低強度超聲)或添加幾種微量營養元素增加厭氧氨氧化菌的活性。例如,劉等。(2008)施加的磁場成功地提高厭氧氨氧化菌的活性,在60T的磁化率下,**大脫氮率提高了30%。類似地,段等,(2011)表明,總氮(TN)厭氧氨氧化菌的去除率提高25.5%,通過施加0.3W/cm2超聲強度與4分鐘的**佳照射時間,這個效果可以持續6天左右。除了外部*域的應用,喬等(2012)表明Mno2粉末的加入也可以使厭氧氨氧化菌的脫氮率為無二氧化錳粉的2倍。
近日,氧化還原介質(RMS)被發現在有機和無機污染物的厭氧生物轉化中起著重要的作用(范德齊和塞萬提斯,2009)。有一些研究集中在氧化還原介質的反硝酸化脫氮工藝中的作用。阿蘭達泰馬瑞等人(2007)通過反硝化生物,包括蒽醌-2,6-二磺酸(AQDS),1,2-萘醌-4-磺酸酯e(NQS).2,6-disulfonate(AQDS), 2-羥基-1,4-萘醌,研究了同時轉換硫化物和硝酸鹽不同醌的氧化還原介質的影響。他們證明,NQS必須使用硫化氫作為電子供體的**高硝酸鹽還原率(荷蘭達泰馬瑞等人,2007)。Guoet等人(2010)探討了氧化還原介質催化脫氮工藝與蒽醌(AQ)由海藻酸鈣固定。他們還發現,加入500個蒽醌固定化珠會加速脫氮約兩倍。劉等(2012)證明,固定到功能聚合生物載體2-磺酸蒽醌(00.4mmol/L),可以提高脫氮率約1.5倍。直到現在還沒有關于RMS對厭氧氨氧化生物有影響的報告。
反硝化生物量**關鍵酶位于細胞膜或細胞膜外介質。因此,RMS可以接觸這些酶和加快硝酸鹽或亞硝酸鹽的生物降解速率。然而,厭氧氨氧化菌的關鍵酶是位于厭氧氨氧化菌膜內,并在其膜引起質子動力勢和隨后的由膜結合ATP酶合成ATP(圖1中示出)。從厭氧氨氧化菌外面進入厭氧氨氧化膜,RMS必須穿過細胞壁,細胞質膜,卵胞漿內膜和厭氧氨氧化膜以便與關鍵酶接觸。厭氧氨氧化菌膜結構由C18和C20脂肪酸組成,包括3個或5個線性級鏈環丁烷(sinningheet等人,2002)。它們被脂結合到甘油骨架或醚結合的烷基鏈(sinningheet等人,2005)。因此,ladderane可能會阻止RMS和厭氧氨氧化膜內部的關鍵酶之間的接觸。
本研究的目的是討調查三種RMS對厭氧氨氧化生物活性的影響。厭氧氨氧化菌的關鍵酶(肼脫氫酶硝酸還原酶、亞硝酸還原酶)上RMS的影響也進行了研究。還討論了在兩個厭氧氨氧化生物和關鍵酶上的效果的可能機制。所測試的RMS包括蒽醌-2,6-二磺酸(AQDS),2-羥基-1,4-萘醌(法)和蒽醌-2-羧酸(AQC)。
2.方法
2.1. 微生物與資料媒體
厭氧氨氧化污泥用于接種源自形反應器的厭氧氨氧化實驗規模的實驗室。反應器的內徑和高度分別為8和45厘米。這種反應器在670天的操作的總脫氮(TN)率為 8.0 kg-N/m3/d 。 KSU-1株(AB057453.1)的厭氧氨氧化菌約占種子的總生物量的70–75%。在實驗中使用的介質主要是由在(NH4)2SO4和亞硝酸鈉中的銨和亞硝酸鹽的形式。該微量礦物質培養基的組成如范德格拉夫等人描述(1996)。#p#分頁標題#e#
2.2 批量測試
為了確定不同的RMS濃度對特殊厭氧氨氧化活性的影響,制定了七組是RMS從0到0.8毫米不同濃度的實驗。該實驗是在七個120毫升含100毫升培養基瓶的血清瓶,每個包含厭氧氨氧化的生物質具有不同的RMS(MLVSS濃度2000 mg/L)。生物樣品取自反應器并在礦物質中洗滌三次,以除去殘留的氮氣。將pH值調整**7.5,將溫度保持在35± 1 °C左右的水域搖床。搖動轉速設定為150轉的轉速,保持生物量和媒體之間的充分接觸。血清瓶內容物與二氮的氣體被洗清以除去溶解的氧。初始NH4 -N和NO2 -N濃度都設定在50毫克/升。特別厭氧氨氧化活性,隨著時間流逝由在瓶里的氨和亞硝酸的濃度每單位生物量降低濃度曲線峰值改變。使用無菌注射器每小時收集一次樣品,并通過0.45lm孔徑的膜吹掃來分析NH4 -N,NO2- N,NO3- N,和RMS濃度。
2.3分析方法
Concentrations of nitrite and nitrate were determined by using on-exchange chromatography (ICS-1100, DIONEX, AR, USA) with an Ion Pac AS18 anion column after ltration with 0.22 lm poresize membranes. NH4-N, MLSS and MLVSS concentrations were measured according to the Standard Methods (APHA, 1995).
硝酸鹽和亞硝酸鹽的濃度通過使用離子交換色譜測定法(ics-1100,Dionex,AR,USA)與0.22ml 孔徑膜過濾PAC AS18陰離子柱。NH4-N,MLSS和MLVSS濃度按標準方法測定(APHA,1995)。
pH值的測量是通過使用一個數字ph計(phs-25,雷磁公司,中G),而DO使用數字DO做計進行測量(YSI,模型55,美G)。使用分光AQDS,AQC和規律濃度均在其**大吸光度采用分光光度法測量(k = 328,336,452 nm)用分光光度計(v-560uv /VIS分光光度計,日本)根據哈藤巴赫等人。(2008)和勞等人。(2002)
2.4生物質提取物的制備及酶活性的測定
從我們的實驗室規模的反應器中量取5克(濕重)厭氧氨氧化生物質。生物樣品離心8000 rpm離心轉,在4°C進行 20 分鐘,隨后用磷酸鈉緩沖溶液洗滌兩次(20毫米,pH 7.0)。洗滌后的沉淀在20毫升緩沖液溶解再沉淀后超聲(225 W,4°C 30分鐘,超聲波處理器CPX 750,美G)。細胞團通過離心(22000轉)分離,在4°C進行 30分鐘。將上清液儲存在4°C作為蛋白質和酶活性測定細胞提取物。蛋白質濃度的測量根據布拉德福德(布拉德福德法,1976),以牛血清白蛋白為標準。據島村等人描述的肼脫氫酶酶活性方法測定(2007),并且反應用分光光度計描繪為在550 納米處增加在標注混合物中細胞色素C的吸光度(v-560紫外可見分光光度計,雅有限公司,日本)。該混合物由100毫米磷酸鉀緩沖液(pH 7.0),50lm馬心臟細胞色素C(氧化型),酶解液適量,和25lm肼。肼脫氫酶(HDH)活性表示為細胞色素減少/毫克蛋白/分鐘。硝酸還原酶(NAR)的活性測定Meincke等人(1992)通過測定亞硝酸鹽消耗方法。氯酸鈉作為電子受體。測定含有22 mm NaClO3和11毫米50毫米亞硝酸鈉鉀磷酸鹽緩沖液,pH值7。反應通過加入酶開始。一個單位的酶活性被denedaslmol 亞硝酸鹽還原酶(NIR)的活性作為賽義德在Hira等人描述的方法的基礎上(2012)以減少甲基紫(MV)作為電子供體。反應混合物含有100 毫米磷酸鉀緩沖液(pH7.0),MV(3毫米),亞硝酸鈉(6毫米)和0.1毫升的生物質提取物在塞緊的4毫升試管內制備。反應是由連二亞硫酸鈉的注射開始(12毫米)。酶活性被作為亞硝酸鹽的還原。所有的測定混合物要在35± 1°C進行。
2.5系統分析
所有在本文中提出的數據是一式三份,實驗的數據的平均值。通過使用單因素方差分析每與鄧肯的多范圍檢驗(SPSS 19),和每次形成統計分析的P<0.05值被認為是統計學顯著性。

英語原文
Effects of quinoid redox mediators on the activity of anammox biomass
highlights
RMs addition depressed TN removal performance by anammox biomass.
RMs could markedly enhance the key enzymes activities of anammox bacteria.
RMs was inferred to play the role as Q/QH2 during anammox process.
Ladderane as the main reason might block the contact between RMs and key enzymes.
Article info
Article history:
Received 19 September 2013
Received in revised form 31 October 2013
Accepted 1 November 2013
Available online 10 November 2013
Keywords:
Anammox
Redox mediator
Hydrazine dehydrogenase
Nitrite reductase
Nitrate reductase
abstract
This study rst explored the relationship between the activity of anammox biomass/key enzymes and quinoid redox mediators, which were anthraquinone-2,6-
disulfonate (AQDS),2-hydroxy-1,4-napthoqui-none (LAW) and anthraquinone-2-carboxylic acid (AQC). Experimental results demonstrated that the total nitrogen removal performance showed a downward trend with all three redox mediators (RMs) dosage increasing. For instance, when the AQC addition increased to 0.8 mM, the TN removal rate sharply reduced to 17.2 mg-N/gVSS/h, only about 20% of the control. This phenomenon might be caused by microbial poisoning with the extracellular RMs additions. Nevertheless, the crude hydrazine dehydroge-nase, nitrite reductase, and nitrate reductase activities were enhanced with RMs addition, about 0.6–3folds compared to the control experiments without RMs addition. The RMs was inferred to play the role as ubiquinol/ubiquinone (Q/QH2) during the anammox process. Furthermore, the specic ladderane membrane structure could block the contacting between RMs and the key enzymes inside anammox-some. This might be the main reason for the contrary effects of RMs on anammox biomass and the key enzymes.#p#分頁標題#e#
1. Introduction
Anaerobic ammonium oxidation (anammox) process is now
recognized as a novel and important process in biological nitrogen removal, which can directly convert NO 2 to N2 gas with NH4 under anaerobic conditions (Strous et al., 1999). Compared with the conventional biological processes (nitrication–denitrication),anammox process offers signicant advantages such as no demand for oxygen and organic carbon, low sludge production and reduced
CO2 or N2O emissions (Opden Campet al., 2006).Recently, Tang
et al. (2010) reported a very high nitrogen removal rate of 74.3–76.7 kg-N/m3/d in a lab-scale anammox UASB reactor, which demonstrated high potential of anammox process in biological nitrogen removal from wastewaters. However, such a high nitrogen removalrate (NRR) was achieved through the continuous addition of anammox seed sludge into the targeted reactor, in which the biomass
concentration increased as high as 42.0–57.7 g-VSS/L (Tanget al.,2010). Furthermore, the relative long doubling time of anammox bacteria will also cause a longer startup period and make the anammox system more vulnerable with low anammox bacteria abundance. Consequently, enhancing the bacterial activity of anammox biomass and further shortening the start-up period of anammox reactors are subjects of great interest and challenge.
Researchers have made numerous efforts to increase the activity of anammox biomass by utilizing external eld energy (mag-netic eld, low intensity ultrasound) or adding some kinds of micronutrient. For instance, Liu et al. (2008) applied magnetic eld successfully to enhance the activity of anammox bacteria whereby the maximum nitrogen removal rate increased by 30% at magnetic value of 60.0 mT in long term. Similarly, Duan et al. (2011) demon-strated that total nitrogen (TN) removal rate of anammox bacteria increased by 25.5% by applying ultrasound intensity of 0.3 W/cm2 with the optimal irradiation time of 4 min, and this effect could last
for about 6 days. Besides the application of external eld, Qiaoet al. (2012) demonstrated that the addition of MnO2 powder could also increase the nitrogen removal rate of anammox biomass about 2 times as high as that without MnO2 powder addition.
Recently, redox mediators (RMs) were found to play an important role in the anaerobic transformation of organic and inorganic contaminants (Van der Zee and Cervantes, 2009).There were a few studies focused on the role of redox mediators on nitrogen removal by denitrication process. Aranda-Tamaura et al.(2007) investi-gated the impacts of different quinoid redox mediators on the
simultaneous conversion of sulphide and nitrate by denitrifying biomass, including anthraquinone-2,6-
disulfonate (AQDS), 2-hy-droxy-1,4-naphthoquinone and 1,2-naphthoquinone-4-sulphonate(NQS).They demonstrated that NQS had the highest nitrate reduc-
tion rate using sulphide as electron donor (Aranda-
Tamaura et al.2007). Guo et al. (2010) explored the possibility of redox mediator catalyzing denitrication process with anthraquinone (AQ) immo-bilized by calcium alginate. They also found that addition of 500 anthraquinone immobilization beads would accelerate the denitri-fying rate about 2 times. Liu et al. (2012) demonstrated that anthraquinone-2-sulfonate (0.04 mmol/L) immobilized into the functional electropolymerization biocarriers could increase the
denitrication rate about 1.5 folds. Until now there was no report on the effects of RMs on anammox biomass.
Most key enzymes of denitrifying biomass are located on the cell membrane or the cell membrane periplasma. Thus, RMs could contact these enzymes and accelerate the biodegradation rate of nitrate or nitrite. However, all the key enzymes of anammox bac-teria are located inside anammoxosome, and on its membrane giving rise to a proton-motive-force and subsequent ATP synthesis by
Membrane-bound ATPases (shown in Fig.1). From the outside of anammox bacteria into anammoxosome, RMs must cross cell wall,cytoplasmic membrane, intracytoplasmic membrane and anammox some membrane in order to contact with the key enzymes.
The ladderane of the anammoxosome membrane consist of C18
and C20 fatty acids including either 3 or 5 linearly concatenated cyclobutane rings (Sinninghe et al., 2002). They are ester bound to a glycerol backbone or ether bound as alkyl chains (Sinninghe et al., 2005). Therefore, the ladderane might block the contacting between RMs and the key enzymes inside anammoxosome.
The objective of this study was to investigate the effects of three kinds of RMs on the activity of anammox biomass. The effects of RMs on the key enzymes (hydrazine dehydrogenase nitrate reductase and nitrite reductase) of anammox bacteria were also studied.The possible mechanisms of effects on both anammox biomass and the key enzymes were also discussed. The tested RMs included anthraquinone-2,6-disulfonate (AQDS), 2-hydroxy-1,4
-naphtho-quinone (LAW) and anthraquinone-2-carboxylic acid (AQC).
2. Methods
2.1. Microorganisms and feed media
The anammox sludge used for inoculation originated from a laboratory-scale anammox upow column reactor in our lab. The inner diameter and height of the column-type reactor were 8 and 45 cm, respectively. The working volume of this reactor was 2 Land continuously operated under 35 ± 1 °C. The total nitrogen(TN) removal rate of this reactor reached 8.0 kg-N/m3/d during 670 days’operation.
Anammox bacteria of KSU-1 strain(AB057453.1) accounted for about 70–75% of the total biomass in seed biomass. The media used in the experiments mainly consisted of ammonium and nitrite in the form of (NH4)2SO4 and NaNO2. The composition of the trace mineral medium was as described by vander Graaf et al. (1996).#p#分頁標題#e#
2.2. Batch experiments
In order to ascertain the effects of different RMs concentrations on specic anammox activity, seven sets of batch experiments were conducted with the RM concentration from 0 to 0.8 mM.The tests were carried out in seven 120 ml serum vials containing 100 ml medium, each containing anammox biomass (MLVSS con-centration of 2000 mg/L) with varied RMs additions. Biomass sam-ples were taken from the reactors and washed three times with
mineral medium to remove residual nitrogen. The pH was adjusted to 7.5 and the temperature was maintained at 35 ± 1 °C in a water bath shaker. The shaking speed was set at 150 rpm to keep the full contact between biomass and media. The serum bottle contents were purged with dinitrogen gas to remove dissolved oxygen. Ini-tial NH
4 -N and NO2 -N concentrations were set at 50 mg-N/L. Spe-
cic anammox activity was estimated from the peak of the curve indicated by the decrease of ammonium and nitrite concentrations per unit biomass concentration in the vials as time lapsed. The samples were collected every hour using a sterile syringe and purged through 0.45
lm pore size membranes to analyze the NH4 -N, NO2 -N, NO3 -N and RMs concentrations.
2.3. Analytical methods
Concentrations of nitrite and nitrate were determined by using ion-exchange chromatography (ICS-1100, DIONEX, AR, USA) with an IonPac AS18 anion column after ltration with 0.22lm pore size membranes. NH4-N, MLSS and MLVSS concentrations were measured according to the Standard Methods (APHA, 1995). pH measurement was done using a digital pH meter (PHS-25, Leici Company, China), while DO was measured using a digital DO meter(YSI, Model 55, USA). The concentrations of AQDS, AQC and LAW were measured spectrophotometrically at their absorbance maxi-mum (k = 328, 336 and 452 nm, respectively) using a spectropho-
tometer(V-560UV/VIS Spectrophotometer,Jasco,Japan) according to Hartenbach et al. (2008) and Rau et al. (2002).
2.4. Preparation of biomass extracts and determination of enzyme activity 
     5 g (wet weight) anammox biomass was taken from our lab-scale reactor. The biomass samples were centrifuged at 8000 rpm at 4 擄C for 20 min followed by washing twice with sodium phos-phate buffer solution (20 mM, pH 7.0). The washed pellets were then resuspended in 20 ml of the same buffer and lysed by freezing and thawing followed by sonication (225 W, at 4 擄C for 30 min,
Ultrasonic processor CPX 750, USA). Cell mass was separated by centrifugation (22 000 rpm), at 4 擄C for 30 min. The supernatant was stored at 4 擄C and used as cell extract in the determination of protein and enzyme activity. Protein concentration was measured according to the Bradford procedure (Bradford, 1976), using BSA
as a standard. Enzyme activity of hydrazine dehydrogenase was according to the methods described by Shimamura
et al. (2007), and the reactions were depicted as an increase in the absorbance of cytochrome c at 550 nm in the standard mixture using a spectrophotometer (V-560 UV/VIS Spectrophotometer, Jas-co, Japan). The mixture consisted of 100 mM potassium phosphate buffer (pH 7.0), 50lM horse heart cytochrome c (oxidized form),an appropriate amount of enzyme solution, and 25 lM hydrazine.The hydrazine dehydrogenase (HDH) activity was expressed as
lmol of cytochrome c reduced/mg protein/min. Nitrate reductase
(Nar) activity was assayed in accordance with the methods re-corded by Meincke et al. (1992) by measuring the nitrite consump-tion. NaClO3 was used as electron acceptor. Assays contained 22 mM NaClO3 and 11 mM NaNO2 in 50 mM potassium phosphate buffer, pH 7.0. The reaction was started by the addition of the en-zyme. One unit of enzyme activity was dened as lmol of nitrite oxidized/mg protein/min. Nitrite reductase (Nir) activity was as-sayed on the basis of the methods described by Hira et al. (2012)using reduced methyl viologen (MV) as electron donors. The reac-tion mixture containing 100 mM potassium phosphate buffer (pH
7.0), MV (3 mM), sodium nitrite (6 mM) and 0.1 ml biomass extracts was anaerobically prepared in a stoppered 4.0 ml cuvette. The reac-tion was started by the injection of sodium dithionite (12 mM). Aunit of enzyme activity was dened as lmol of nitrite reduced/mg protein/min. All the assay mixtures were incubated at 35 鹵 1 擄C 2.5. Statistical analysis
All the data presented in this paper were the mean values of data from triplicate experiments. Statistical analysis was per-formed by using one-way ANOVA with the Duncan’s multiple range test (SPSS 19.0) and values of p < 0.05 were considered to be statistically signicant.
 
 
相關文章
主站蜘蛛池模板: 露脸丨91丨九色露脸| 青青草色视频| 亚洲精品久久久久久久久久| 在线成人一区| www.中文字幕av| 天堂亚洲精品| 天堂av观看| 亚洲13p| 91综合久久爱com| 成人在线视频网| 国产精品福利一区二区三区| 欧美人与zoxxxx另类| 美女打屁股网站| 国产第一av| 久久永久免费视频| 91蜜桃视频在线观看| 夜夜操导航| 午夜视频h| 伊人久久99| 亚洲国产成人精品在线| 一区二区三区有限公司| 777色视频| 老司机在线免费视频| 自拍亚洲国产| 国产偷v| 亚洲av无码乱码国产精品久久| 爱爱爱免费视频| metart顶级尤物video| 久久高清| 国产农村妇女精品久久| 国产一区在线播放| 久久久久无码精品国产sm果冻| 欧美少妇xxx| 一区二区三区视频免费在线观看| 欧美九九九| 看看毛片| 日韩国产91| 亚洲精品无码专区| 99热国产在线观看| www.狠狠干| 亚洲国产不卡视频| 天天cao| 亚洲区第一页| 成人综合一区| 欧美精品一区二区三区视频| 国产女无套免费视频| 最新超碰在线| 免费av在线电影| 久久久久香蕉视频| 亚洲第一自拍| 思思99热| xxxxx麻豆| 五月婷婷国产| 欧美国产在线一区| 久久国产情侣| 欧美另类xxxx野战| 免费a级毛片18以上观看精品| 天天看黄色| 99自拍网| 日韩卡一卡二| 久综合色| 黄色视屏免费| 欧美情趣视频| 成年人网站在线观看视频| 秋霞在线视频观看| 免费看美女隐私网站| 日日射影院| 成人免费大全| 国产精品国产精品国产| 超碰99在线| av天天在线| 天堂色播| 日韩成人在线看| 日韩中文久久| 婷综合| 56porn在线视频| 国产福利一区二区三区| 午夜三级在线| 国产精品13p| 欧美乱论视频| 亚州av一区| 粉嫩欧美一区二区三区| av网站在线免费| 亚洲一级一级| 国产微拍精品| 高柳家动漫在线观看| 久久久中文| 一本久在线| 最新中文字幕av专区| 少妇网址| 国产极品粉嫩| 麻豆传媒在线观看视频| 免费在线黄色片| 狠狠撸狠狠操| 亚洲国产精品福利| 91免费在线看| 爱爱视频在线看| 日韩簧片在线观看| 裸体毛片| 乌克兰xxxxx少妇精品二区| xxxx国产精品| 最新免费av网址| 成人深夜视频在线观看| 欧美成人怡红院| 777一区二区三区| 一本岛高清v一三区| 久久久99精品免费观看| 日韩一卡二卡| 香蕉网在线观看| 99re热视频| 国模私拍一区| www.youjizz.com久久| 日韩六区| 中出 在线| 香蕉视频网站在线| 狠狠的操| 97av超碰| 青青激情网| a级片国产| 色婷婷综合久久久久中文一区二区| www.欧美com| 91亚洲一区二区| 成年人的网站在线观看| 成人三级黄色| 大肉大捧一进一出好爽| 中国免费看的片| 丰腴饱满的极品熟妇| 91视频最新网址| av毛片基地| 欧美在线 | 亚洲| 人人爱天天干| av在线电影网| 动漫美女被到爽| 国产中文欧美日韩在线| aa黄色大片| 老司机午夜精品视频| 五月色婷婷综合| 黄www在线观看| 麻豆网站免费观看| 国产精品爱啪在线线免费观看| 天堂中文在线免费观看| 日韩一区二区三区久久| 中文字幕在线观看亚洲| 成人理论片| 午夜剧场欧美| 免费黄色大片| 国产永久免费无遮挡| 欧美性生话| 曰批视频在线观看| 日本激情网站| 亚洲图片小说另类| 亚洲成人中文在线| 超碰人操| 欧美精品国产一区二区| 综合久久精品| 日韩一级片免费看| 欧美一及片| 欧美一区二区三区喷汁尤物| 亚洲福利在线播放| 欧美性大片xxxxx久久久| 美女搞黄视频网站| 天天摸天天爽| 国产免费一区二区三区免费视频| 免费看三级黄色片| 亚洲天堂手机版| 污污视频在线| 日韩网站在线| av先锋资源网| 高清视频在线播放| 人妖粗暴刺激videos呻吟| 日本十大三级艳星| 欧美精品一区二区三区中文字幕| 日韩在线| 国产乱码精品一区| av鲁丝一区鲁丝二区鲁丝三区| 日本爱爱视频免费| 五月婷婷综合色| 人人干人| 九九热最新视频| 黄色福利| 朝桐光av在线一区二区三区| 神马影院一区二区三区| 风流少妇按摩来高潮| av黄色免费在线观看| 国产乱轮视频| 欧美亚洲久久| 伊人加勒比| 国产一卡二卡三卡| 国产免费黄色网址| 六月婷婷综合| 精品国产乱码| 午夜神马影院| 999亚洲国产996395| 亚洲精品456在线播放| 亚洲精品国产一区二| 小毛片| 久久久免费看| 成人在线日韩| 精品一区二区三区蜜桃臀www| 三级a做爰全过程| 少妇无套内谢久久久久| 91av久久| 亚洲精品国产精品乱码不卡| 韩国中文三级hd字幕| 亚洲欧美综合| 日本www免费| 96久久精品| 中文字幕在线2018| 蜜桃臀av在线| 亚洲AV无码国产精品午夜字幕| 激情中文字幕| 久久网一区二区三区| 91黄色入口| 亚洲二区在线视频| 窝窝午夜看片| 九一国产视频| 91碰在线视频| 欧美日韩精品在线视频| 亚洲农村妇女hdxxx| 啪啪官网| 精品欧美一区二区三区在线观看| 欧美aⅴ| 最新黄色网页| 中文一区二区在线播放| 亚洲成人123| 天堂av观看| 成人无码一区二区三区| 国内视频一区二区| 欧美日韩色综合| 天天躁狠狠躁狠狠躁夜夜躁68 | 色姑娘天天操| 美女100%露胸无遮挡| 欧美成人免费一级人片100| 免费看毛片网站| 国产情侣av在线| 亚洲精品99999| 在线观看短视频网站入口免费| 小香蕉av| 九色蝌蚪自拍视频| 99少妇| 免费看wwwwwwwwwww的视频| 久久久精品久久久久| 99精品国产99久久久久久97| 午夜少妇av| 天天爽天天插| 欧美久久久久久| 性高潮视频在线观看| 欧美13p| 神马老子午夜| 免费在线观看网址入口| 国产成人精品一区二区三区| 欧美视频在线播放| 国产suv精品一区二区四| 久草视频在线观| 国产另类ts人妖一区二区| 久久久久97| 国产视频在| 欧美大屁股熟妇bbbbbb| 日韩毛片久久| 熟女少妇一区二区| 91日批视频| 国产自产一区二区| 亚洲激情欧美色图| 国产一区二区三区久久| 一本一道波多野结衣av黑人| 日批免费观看视频| 亚洲无吗在线观看| 国产成人区| 欧美另类videos| 亚洲黄页在线观看| 天天干天天擦| 亚洲日本综合| nocturnal动漫全集在线播放| 精品爆乳一区二区三区无码av| 在线成人亚洲| 午夜大片网| 亚洲深夜在线| 成人黄色电影视频| 日韩精品首页| 青草国产在线视频| 爱情岛论坛自拍亚洲品质极速最新章| 日本老少交| 亚瑟av在线| 日本视频免费| 极品丝袜乱系列集合| 91av在| 欧美小视频在线观看| 日日夜夜网| 美国av片| 欧美电影一区| 91网页入口| 九一成人免费视频| 日韩午夜片| 国内精品国产三级国产99| 午夜丰满少妇性开放视频| 亚洲中文字幕无码爆乳av| 男人的天堂手机在线| 欧美久久99| 日本高潮视频| 免费av中文字幕| 丰满少妇xbxb毛片日本| www日本com| 天天爽天天操| 一级爱爱片| av小次郎最新网址| 篠田优在线观看| 看欧美大片| 一区二区 中文字幕| xxxxwwww在线观看| xxxx精品| 亚色在线| 国产午夜免费视频| 韩国一区二区在线观看| chinese少妇国语对白| www.精品国产| 欧美日韩国产二区| 奇米色播| 亚洲777| 高潮毛片又色又爽免费| 99久久网站| 久久女同| 成人伊人| 国产麻豆一精品一av一免费| 能直接看的av| 黄色综合网站| 美女穴穴| 国产丝袜av| 美女隐私直播| 国产suv精品一区二区三区| 精品久久久久久无码中文字幕| www日本com| 欧美日韩精品网站| 国产精品 欧美 日韩| 国产精品久久久久9999小说| 一级特黄aaa大片| 人人插人人草| 精品久久久国产| 美女操出白浆| 在线91观看| 狠狠搞狠狠操| 韩国19禁床戏大尺度片| 久久久96| 2025av在线播放| 欧美丰满少妇xxx高潮app| 日本少妇电影| 黄色一级免费网站| 日韩av片在线播放| 西欧free性满足hd老熟妇| 99er精品视频| 熟女少妇一区二区三区| 美女av免费在线观看| 欧美黄色视屏| 18岁免费看的视频| 日本xxxx在线观看| 久久草视频| 久草在在线| 毛片88| 97人妻一区二区精品视频| 亚洲色图36p| 亚洲伊人成人网| 国产91九色一区二区三区| 伊人成人动漫| 91亚洲区| 亚洲一区av在线| 国产在线综合网| 伊人终合网| 日韩av资源在线| 91亚洲精品久久久| 日日操日日摸| 亚洲AV第二区国产精品| 丁香伊人网| 91亚洲精选| 精品久久免费视频| www成人免费| 波多野结衣视频网站| 欧美v片| 超碰av在线播放| 91蝌蚪色| 欧美色图影院| 午夜av毛片| 一级片免费播放| 久久精品国产亚洲av蜜臀色欲| 国产91黄色| 国产男女啪啪| 免费在线观看一区| 免费欧美黄色片| 久久久久艹| 亚洲逼逼| 欧美11p| 久草手机在线观看| a毛片大片| 久青草视频在线| 日本va视频| a在线观看| 国产在线观看av| 女女百合高h喷汁呻吟玩具| 在线不卡的av| 国产成人午夜视频| 西西44rtwww国产精品| 亲嘴脱内衣内裤| 免费福利av| 美女福利网站| 韩国av电影网站| 国产精品免费无遮挡| 日日爱网站| 欧美日本在线视频| 欧美在线色图| 成人污污视频| av在线免费观看国产| 亚洲精品1区2区3区| 日本aaa级片| 欧美精品久久久久久久久老牛影院| 1024欧美| 久久中文字幕视频| 99er精品视频| 中文字幕亚洲色图| 黄色特级大片| 炕上如狼似虎的呻吟声| 国产理论精品| 日本在线小视频| 国产69av| 青青青国内视频在线观看软件| 久久毛片网站| 精品一区二区三区视频| 欧美偷拍另类| 在线成人| 超碰五月| 主播av在线| 蜜桃黄色av| 九色九一| 国产网红自拍| 亚洲主播在线| 又大又长粗又爽又黄少妇视频| 欧美激情在线免费观看| 国产精品免费一区二区三区都可以| 美女视频国产| 色av综合| 久久精品日韩| 天堂av中文在线| 国产裸体视频| 国产婷婷色综合av蜜臀av| 91激情视频在线观看| 欧美乱论视频| 亚洲最大毛片| 好男人影视www| 美女张开双腿让男人捅| 波多野一区| 亚洲色图欧美色| 欧美精品色图| 美女一区二区三区四区| 毛片基地站| 人妻一区二区三区视频| 69精品一区二区三区| 国产做受麻豆动漫| 上海女子图鉴| 污视频在线| 老妇高潮潮喷到猛进猛出| 九九久久久| 在线观看免费观看| 欧洲黄色片| 欧美另类videosbestsex| 看毛片网| 久久精品爱爱| 正在播放国产91| 精品98| 九九精品在线视频| 天天摸天天做| 久久久精品影视| 久久高清无码视频| 在线视频97| 欧美一二三| 亚洲无限看| 九九在线观看免费高清版| 毛片动漫| 欧美色图88| 爽得抽搐h1v1| 美女网站视频久久| 欧美xxxxav| 伊人涩| 国产一级免费| 国产自偷自偷免费一区| 超碰精品在线| 亚洲区一区二| 夜夜躁天天躁很躁mba| 欧美色吊丝| av丝袜天堂| 久久xxxx| 欧美一级精品| 亚洲涩区| av免费网| 999精品在线| 四虎国产精品久久| 精品综合网| 亚洲成人黄色av| av免费网站在线观看| 在线不卡日本| 欧美日韩视频免费观看| 成人www视频| 自画像电影| 久久一久久|